5,636 research outputs found

    Large scale bias and the inaccuracy of the peak-background split

    Full text link
    The peak-background split argument is commonly used to relate the abundance of dark matter halos to their spatial clustering. Testing this argument requires an accurate determination of the halo mass function. We present a Maximum Likelihood method for fitting parametric functional forms to halo abundances which differs from previous work because it does not require binned counts. Our conclusions do not depend on whether we use our method or more conventional ones. In addition, halo abundances depend on how halos are defined. Our conclusions do not depend on the choice of link length associated with the friends-of-friends halo-finder, nor do they change if we identify halos using a spherical overdensity algorithm instead. The large scale halo bias measured from the matter-halo cross spectrum b_x and the halo autocorrelation function b_xi (on scales k~0.03h/Mpc and r ~50 Mpc/h) can differ by as much as 5% for halos that are significantly more massive than the characteristic mass M*. At these large masses, the peak background split estimate of the linear bias factor b1 is 3-5% smaller than b_xi, which is 5% smaller than b_x. We discuss the origin of these discrepancies: deterministic nonlinear local bias, with parameters determined by the peak-background split argument, is unable to account for the discrepancies we see. A simple linear but nonlocal bias model, motivated by peaks theory, may also be difficult to reconcile with our measurements. More work on such nonlocal bias models may be needed to understand the nature of halo bias at this level of precision.Comment: MNRAS accepted. New section with Spherical Overdensity identified halos included. Appendix enlarge

    Selection bias in dynamically-measured super-massive black hole samples: consequences for pulsar timing arrays

    Full text link
    Supermassive black hole -- host galaxy relations are key to the computation of the expected gravitational wave background (GWB) in the pulsar timing array (PTA) frequency band. It has been recently pointed out that standard relations adopted in GWB computations are in fact biased-high. We show that when this selection bias is taken into account, the expected GWB in the PTA band is a factor of about three smaller than previously estimated. Compared to other scaling relations recently published in the literature, the median amplitude of the signal at f=1f=1yr−1^{-1} drops from 1.3×10−151.3\times10^{-15} to 4×10−164\times10^{-16}. Although this solves any potential tension between theoretical predictions and recent PTA limits without invoking other dynamical effects (such as stalling, eccentricity or strong coupling with the galactic environment), it also makes the GWB detection more challenging.Comment: 6 pages 4 figures, submitted to MNRAS letter

    The Mass Function of Dark Halos in Superclusters and Voids

    Full text link
    A modification of the Press-Schechter theory allowing for presence of a background large-scale structure (LSS) - a supercluster or a void, is proposed. The LSS is accounted as the statistical constraints in form of linear functionals of the random overdensity field. The deviation of the background density within the LSS is interpreted in a pseudo-cosmological sense. Using the constraints formalism may help us to probe non-trivial spatial statistics of haloes, e.g. edge and shape effects on boundaries of the superclusters and voids. Parameters of the constraints are connected to features of the LSS: its mean overdensity, a spatial scale and a shape, and spatial momenta of higher orders. It is shown that presence of a non-virialized LSS can lead to an observable deviation of the mass function. This effect is exploited to build a procedure to recover parameters of the background perturbation from the observationally estimated mass function.Comment: 23 pages, 6 figures; to be appeared in Astronomy Reports, 2014, Vol. 58, No. 6, pp. 386-39

    Bimodality of Galaxy Disk Central Surface Brightness Distribution in the Spitzer 3.6 micron band

    Full text link
    We report on measurements of the disk central surface brightnesses (mu0) at 3.6 microns for 438 galaxies selected by distance and absolute magnitude cutoffs from the 2350+ galaxies in the Spitzer Survey of Stellar Structure in Galaxies (S4G), one of the largest and deepest homogeneous mid-infrared datasets of nearby galaxies. Our sample contains nearly 3 times more galaxies than the most recent study of the mu0 distribution. We demonstrate that there is a bimodality in the distribution of mu0. Between the low and high surface brightness galaxy regimes there is a lack of intermediate surface brightness galaxies. Caveats invoked in the literature from small number statistics to the knowledge of the environmental influences, and possible biases from low signal to noise data or corrections for galaxy inclination are investigated. Analyses show that the bimodal distribution of mu0 cannot be due to any of these biases or statistical fluctuations. It is highly probable that galaxies settle in two stable modes: a dark matter dominated mode where the dark matter dominates at all radii - this gives birth to low surface brightness galaxies - and a baryonic matter dominated mode where the baryons dominate the dark matter in the central parts - this gives rise to the high surface brightness disks. The lack of intermediate surface brightness objects suggests that galaxies avoid (staying in) a mode where dark matter and baryons are co-dominant in the central parts of galaxies.Comment: Accepted for publication in MNRAS, 9 pages, 10 figures, 1 tabl

    The unusual distribution of molecular gas and star formation in Arp 140

    Get PDF
    We investigate the atomic and molecular interstellar medium and star formation of NGC 275, the late-type spiral galaxy in Arp 140, which is interacting with NGC 274, an early-type system. The atomic gas (HI) observations reveal a tidal tail from NGC 275 which extends many optical radii beyond the interacting pair. The HI morphology implies a prograde encounter between the galaxy pair approximately 1.5 x 10**8 years ago. The Halpha emission from NGC 275 indicates clumpy irregular star-formation, clumpiness which is mirrored by the underlying mass distribution as traced by the Ks-band emission. The molecular gas distribution is striking in its anti-correlation with the {HII regions. Despite the evolved nature of NGC 275's interaction and its barred potential, neither the molecular gas nor the star formation are centrally concentrated. We suggest that this structure results from stochastic star formation leading to preferential consumption of the gas in certain regions of the galaxy. In contrast to the often assumed picture of interacting galaxies, NGC 275, which appears to be close to merger, does not display enhanced or centrally concentrated star formation. If the eventual merger is to lead to a significant burst of star formation it must be preceded by a significant conversion of atomic to molecular gas as at the current rate of star formation all the molecular gas will be exhausted by the time the merger is complete.Comment: 13 paper, accepted my Monthly Notices of the Royal Astronomical Societ

    Lagrangian bias in the local bias model

    Full text link
    It is often assumed that the halo-patch fluctuation field can be written as a Taylor series in the initial Lagrangian dark matter density fluctuation field. We show that if this Lagrangian bias is local, and the initial conditions are Gaussian, then the two-point cross-correlation between halos and mass should be linearly proportional to the mass-mass auto-correlation function. This statement is exact and valid on all scales; there are no higher order contributions, e.g., from terms proportional to products or convolutions of two-point functions, which one might have thought would appear upon truncating the Taylor series of the halo bias function. In addition, the auto-correlation function of locally biased tracers can be written as a Taylor series in the auto-correlation function of the mass; there are no terms involving, e.g., derivatives or convolutions. Moreover, although the leading order coefficient, the linear bias factor of the auto-correlation function is just the square of that for the cross-correlation, it is the same as that obtained from expanding the mean number of halos as a function of the local density only in the large-scale limit. In principle, these relations allow simple tests of whether or not halo bias is indeed local in Lagrangian space. We discuss why things are more complicated in practice. We also discuss our results in light of recent work on the renormalizability of halo bias, demonstrating that it is better to renormalize than not. We use the Lognormal model to illustrate many of our findings.Comment: 14 pages, published on JCA
    • 

    corecore